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Patriotis, Christos

MECHANISMS AND CHEMOPREVENTION OF OVARIAN CARCINOGENESIS
PROGRESS REPORT

INTRODUCTION

Due to its asymptomatic development and frequent diagnosis at advanced stages, ovarian
cancer is the most deadly among the gynecological cancers. A better understanding of the early
molecular events leading to the disease is of utmost importance for the development of strategies
for its efficient early diagnosis and prevention, which could improve patient survival and quality
of life. We have shown that DMBA-induced mutagenesis in the rat ovary, combined with
gonadotropin hormone-mediated enhanced mitogenesis of the ovarian surface epithelium gives
rise to lesions ranging from preneoplastic to early neoplastic and advanced ovarian tumors,
which resemble the human disease. The goal of the study is to use this animal model to study the
molecular mechanisms behind ovarian oncogenesis and to conduct a preclinical trial for its
chemoprevention. The aims of the study are: 1) Determine the molecular genetic mechanisms
behind ovarian oncogenesis in the DMBA/gonadotropin-animal model; 2) Determine the
efficacy of a COX-2 inhibitor to prevent the appearance and/or progression of DMBA-induced
ovarian lesions; and 3) Study the in vivo mechanisms of the putative chemopreventive effect of
COX-2 inhibition. Genomic and mutation analyses, as well as other molecular biology assays
will be employed to accomplish the objectives of the study.

BODY

During the first year of support by this DoD-CDMRP grant, we have accomplished the
following progress along the proposed aims of the study:

1. We have achieved a histopathological classification similar to the human and initiated the
molecular characterization of the ovarian lesions induced in the rat ovary following local
administration of low dose-DMBA with or without stimulation with gonadotropin hormones. We
have demonstrated that hormone co-treatment leads to an increased lesion severity, which
indicates that gonadotropins may indeed promote ovarian cancer progression. We have also
shown that point mutations in the Tp53 and Ki-Ras genes, which are characteristic of human
ovarian carcinomas, are also present in the DMBA-induced ovarian lesions in the rat. Most
importantly, the presence of such mutations in putative preneoplastic lesions confirms their
precursor, clonal character. Additionally, we observed an overexpression of estrogen and
progesterone receptors in "preneoplastic" and early neoplastic lesions and their loss in advanced
tumors, suggesting a role of these receptors in ovarian cancer development. Our data indicate
that this DMBA animal model gives rise to ovarian lesions that closely resemble human ovarian
cancer and it is adequate for further studies on the mechanisms of the disease and its clinical
management. The data from this work was included in a report that was recently published in
Cancer Research'.

2. The goal of specific aim 1 of the study during the first year of support is to generate a
large number of DMBA-induced ovarian lesions in the rat that could ensure statistical power and
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significance of the findings; using microarray gene expression analysis to initiate their molecular
classification into groups at different stages of neoplastic development. Immediately prior to the
beginning of the first year of support by this grant (Nov.-Dec. 2003), using funds provided by the
FCCC NIH-OC-SPORE, we initiated an experiment in which 160 female Sprague-Dawley rats at
6 weeks of age were subjected to bilateral survival surgery to the ovaries. Animals were
separated into 2 groups: a) Control groups al (20 animals; no hormones) and a2 (40 animals;
with hormones): beeswax-impregnated surgical sutures were implanted in the portion of each
ovary that is contralateral to the fallopian tube; b) DMBA/hormone group: 100 animals;
DMBA/beeswax-impregnated surgical sutures were implanted bilaterally in the ovaries of the
animals as above. Two months following the surgical procedure, animals (a2 and DMBA) were
subjected to 4 cycles of sequential administration of PMSG and hCG These procedures are
described in detail in the Experimental Design and Methods section of our grant proposal and in
our recent publication (Stewart et al. 1). All treated animals were maintained for up to 12 months
from the survival surgical procedure, or until disease development and animal distress became
apparent. Animals were sacrificed following guidelines approved by the FCCC IACUC
committee, the NIH and the DoD-CDMRP.

The ovaries of all animals were harvested and fixed in 70% ethanol at 4°C for 18hr,
following which they were embedded in paraffin. Three 5ptm-thick sections -50jm apart of
each other were obtained from the two end-portions of each ovary, stained with H&E and
subjected to histopathology examination to determine the presence of ovarian lesions. Based on
their histopathological characteristics and stage of neoplastic development, the detected lesions
were classified into 7 categories. Control ovarian surface epithelial (OSE) cells obtained from
al, a2 and DMBA/hormone ovaries generated 3 additional sample categories. So far, at least 3
samples per category have been processed further for laser-capture microdissection (LCM), RNA
purification and amplification. Depending on the size of lesion and its epithelial cell component,
4-6 5gtm-thick sections were generated from the organ portion adjacent to the corresponding
H&E-stained sections. Similarly, 4-6 5i.tm-thick sections were also generated from control al
and a2 ovaries. Tissue sections were deparaffinized, rehydrated, stained with HistoGene LCM
Frozen Staining Kit (Arcturus), dehydrated and stored at -80'C until they were used for LCM.
Sections were subjected to LCM to select epithelial cell component (2,000-5,000 cells) from
corresponding lesions or normal OSE on CapSure HS LCM Caps using an AutoPix Automated
LCM apparatus (Arcturus). Where necessary, individual cells were selected using a laser-beam
diameter of 7-10ptm. Total RNA was immediately isolated from the microdissected cells using
the PicoPure RNA Isolation Kit (Arcturus), yielding -5ng of total RNA. RNA quantification
and integrity assessment were carried out by microfluidic electrophoresis on a 2100 Bioanalyzer
using the RNA 6000 Pico Chip LabChip Kit (Agilent Technologies). Total RNA obtained from
all microdissected samples was subsequently subjected to amplification using an Ovation
Aminoallyl RNA Amplification and Labeling System (NuGen Technologies). The product of
this amplification is anti-sense aminoallyl-substituted cDNA, which can be used for both
oligonucleotide and cDNA microarray gene expression analysis, as well as for real-time qRT-
PCR-based verification of the microarray results.

We had originally proposed to use rat oligonucleotide microarrays to be produced at the
FCCC DNA microarray facility. In the past year, our facility had been experiencing problems
with inconsistency in the quality and results of the mouse oligo-arrays generated with the MWG
mouse oligonucleotide library. Because of this reason, the Human Genetics Research Program at
FCCC has recently purchased the Affymetrix GeneChip system, a package offer that also

5



Patriotis, Christos

includes GeneChip microarrays at a considerably low price. This system includes the GeneChip
Fluidics Station450 for automated microarray washes, the GeneChip Scanner 3000 for
microarray image capture, and the GeneChip Operating Software (GCOS) V.1.2 for microarray
image and data analysis. Instead of investing funds and effort in generating rat oligo-arrays of
inconsistent quality at the FCCC microarray facility, we decided to use the Affymetrix U34A Rat
Genome arrays. These contain 7,000 fill-length sequences and 1,000 EST clusters from the
UniGene database. Given the high quality of the GeneChip arrays and the fact that our Ovation-
based amplification of RNA results into aminoallyl-substituted anti-sense cDNA, which is well
adapted for oligo-microarray hybridization and gene expression analysis, we are confident that
we will be able to obtain rapidly reliable and reproducible genomic data from our rat ovarian
lesion samples. This will be further facilitated by our extensive expertise in data normalization
and mining. We have recently developed an algorithm for efficient normalization of microarray-
generated datasets from multiple experiments. This algorithm was tested both with radioactively
labeled filter-macroarrays as well as with Affymetrix GeneChip array data and we have
demonstrated that it is superior to other conventional methods using mean, median or linear
regression analysis2.

3. The goal of specific aim 2 of the study during the first year of support is to initiate a
chemoprevention trial on the basis of the DMBA/hormone animal model of ovarian cancer
developed and characterized by us. Given the space limitations of the Laboratory Animal
Facility (LAF) at FCCC to house animals subjected to treatment with carcinogens, our plan was
to purchase the animals for this study as soon as all animals treated for the purpose of specific
aim I were sacrificed. This was planned for November-December, 2004. Animals are normally
subjected to survival surgery/carcinogenesis 1-2 weeks after their transfer to our LAF and no
later than 6-7 weeks of age. The goal of the proposed and approved by the scientific review
committee chemoprevention preclinical trial is to test the efficacy of the COX-2 specific
inhibitor Celecoxib to prevent the appearance and/or progression of DMBA-induced ovarian
lesions. Recently, the results of large clinical trials with this and other COX-2 specific inhibitors
have demonstrated serious toxicities and side effects on the basis of which all clinical trials have
been put on hold. Because of this reason, we decided to postpone the proposed preclinical
testing of Celecoxib in order to avoid the possibility of obtaining results that may no longer be
relevant for the clinic. We have contacted the DoD-CDMRP Grants Manager, Dr. Naba Bora,
and are currently discussing alternative agents to be used for the proposed preclinical
chemoprevention study. A description of the changes in the design of the preclinical
chemoprevention study will be submitted to the DoD-CDMRP for review and approval prior to
its initiation.

KEY RESEARCH ACCOMPLISHMENTS

The following are the key research accomplishments during the first year of support by this
DoD-CDMRP grant:

" Local DMBA administration to the ovary induces ovarian cancer development with
distinct preneoplastic, and neoplastic stages'.

" Gonadotropin hormones contribute to ovarian cancer progression'.
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"* Tp53 and Ki-Ras mutations that are characteristic for human ovarian carcinomas are
present in DMBA-induced preneoplastic ovarian lesions'.

"* DMBA/gonadotropin treatments were used to generate multiple ovarian lesions at
different stages of neoplastic development in 100 Sprague-Dawley rats. 60 additional
animals were treated as controls (20 with vehicles alone, and 40 with DMBA-vehicle
and gonadotropins).

"* Ovarian epithelial cells were harvested from ovarian lesions at different stages of
neoplastic development (10 categories including normal OSE) using LCM
microdissection.

"• Total RNA was purified from at least 3 samples per ovarian lesion category and subjected
to linear amplification to generate aminoallyl-substituted anti-sense cDNAs. The
latter will be used as probes to interrogate 8,000 unique rat genes on Affymetrix
U34A GeneChip microarrays.

REPORTABLE OUTCOMES

1- Stewart, S.L., Querec, T.D., Ochman, A.R., Gruver, B.N., Bao, R., Babb, J.S., Wong,

T.S., Koutroulides, T., Pinnola, A. D., Klein-Szanto, A., Hamilton, T.C., and
Patriotis, C. Characterization of a carcinogenesis rat model of ovarian preneoplasia
and neoplasia. Cancer Res., 64: 8177-83, 2004.

-2 Stoyanova, R. Querec, T.D., Brown, T.R. and Patriotis, C. Normalization of DNA

arrays by Principal Component Analysis. Bioinformatics, 20:1772-84, 2004.

* Sprague-Dawley rat ovaries (200) treated with DMBA and gonadotropins and containing
ovarian epithelial lesions at different stages of neoplastic development.

* Total RNA purified from the epithelial component of above ovarian lesions and amino-
allyl-substituted anti-sense cDNAs obtained through linear amplification of above
RNAs. The latter can be used directly for microarray (oligo and cDNA) and real-time
qRT-PCR gene expression analysis.

CONCLUSIONS

We have demonstrated that direct application of a low dose of DMBA in the rat ovary, alone
or combined with multiple cycles of gonadotropin administration, elicits a neoplastic process that
affects mostly the OSE and leads to the progressive development of putative epithelial cell
preneoplasia, serous low malignant potential (LMP) tumors, and invasive carcinomas. The
similarity in histology and path of dissemination of the DMBA-induced rat ovarian carcinomas
with those in the human, as well as the presence of gene mutations that are common in human
ovarian cancer, demonstrate the validity of this animal model for further delineation of the
mechanisms underlying ovarian tumorigenesis. Finally, DMBA-induced ovarian oncogenesis in
the rat could be used to pre-clinically test new agents for the prevention and/or therapy of the
disease.
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ABSTRACT array datasets be normalized to correct for the inherent exper-
Motivation: Detailed comparison and analysis of the out- imental differences. The critical element in this process is the
put of DNA gene expression arrays from multiple samples discrimination of the interesting, biological variation from
require global normalization of the measured individual gene the obscuring variation, which is related to the experimental
intensities from the different hybridizations. This is needed conditions (Hartemink et al., 2001). This is why the initial
for accounting for variations in array preparation and sample attempts towards normalization of array datasets relied on the
hybridization conditions. concept that a group of genes could be identified a priori and
Results: Here, we present a simple, robust and accurate pro- serve as 'housekeeping' genes, assuming that their expres-
cedure for the global normalization of datasets generated with sion will reflect directly the obscuring experimental variation.
single-channel DNA arrays based on principal componentana- As discussed in detail below, if such a subset of genes could
lysis. The procedure makes minimal assumptions about the be identified reliably, then well-defined normalization factors
data and performs well in cases where other standard proced- could be estimated to within the accuracy inherent in the meas-
ures produced biased estimates. It is also insensitive to data urements. Unfortunately, as shown by others (Butte et al.,
transformation, filtering (thresholding) and pre-screening. 2001; Selvey et al., 2001) and by us in this report, this simple
Contact: Christos.Patriotis@fccc.edu concept works only in very limited cases. (Here and in the

rest of the paper, we will refer to the a priori specified

INTRODUCTION housekeeping genes as 'designated' in order to distinguish
them from those determined to be the 'true' housekeeping

The development of high-density DNA arrays (oligonuc-

leotide and cDNA) has revolutionized our ability to char- genes. The latter represent the subset of genes whose expres-
sion is invariant to the particular biological and/or experi-

acterize biological processes and samples genetically by mental variables in the multiple microarray experiments being
monitoring the relative expression of thousands of genes sim- compared.)
ultaneously (Bowtell, 1999; Debouck and Goodfellow, 1999, The realization that in most of the cases the 'designated'
Duggan et al., 1999; Lander, 1999). To meet the challenges housekeeping genes cannot be used for reliable normaliza-

for interpretation of this complex data, sophisticated soft- tonsespune t en t of a ltatie appoahesfo

ware packages have become available for analysis of the gene normalization. The majority of these approaches determine

expression profiles, such as ScanAnalyze (Eisen and Brown, normalization factors on the basis of averages over the beha-

1999), ArrayExplorer (Patriotis et al., 2001) and ImaGene vior of the entire set of genes measured (Schuchhardt te al.,

(Biodiscovery, Inc.). An important, but still unresolved, issue 2000). ofJpically, these methods utilize the mean or median of

is associated with the normalization of the relative expression the array intensities (Quackenbush, 2001) and linear (Golub

of genes across a series of microarray experiments. In order to e arra 1999) o r g alkegresso (Sapi and Chur chill.

compare the results from multiple samples, which is the ulti- 2000). A vr oftnon-lnearechn wer als proposed
mategoa ofthee sudis, t i obigaorytha th iniviual 2000). A variety of non-linear techniques were also proposed

mate goal of these studies, it is obligatory that the individual (Schadt et al., 2000, 2001; Li and Wong, 2001; Bolstad et al.,

2003).
"To whom correspondence should be addressed. There is also a series of methods that identify a subset of
t
Present address: Emory University, GDBBS, 1462 Clifton Road, Dental genes in the data that can be assumed as housekeeping (Zien

Bldg, Suite 314, Atlanta, GA 30322, USA. etal., 2001; Kepler etal., 2002). All these approaches perform

1772 Bioinformatics 20(11) © Oxford University Press 2004; all rights reserved.



PCA-assisted normalization of microarray data

satisfactorily when the following two assumptions about the constants (relative since unless at least one of the ci s is known,
data are met: it is impossible to normalize the data absolutely).

We now turn to the problem of identifying the genes in S.
(I) the majority of the genes (in the fitting segment for the The obvious method is to calculate the densities in the cloud

non-linear approaches, or overall) are not affected by of n data points in the m-dimensional data space, which rep-
the experimental variables, i.e. they can all be regarded resent the directions of n gene levels in the m observations. In
as housekeeping genes; and reality, this is difficult because there are approximately NI-1

(2) the subset of differentially expressed genes are 'activ- directions for examining if each orientation is divided into N
ated' symmetrically, i.e. the overall intensity change of segments. In order to reduce the dimensions of the space that
up- and down-regulated genes is similar, needs to be examined, we use PCA to identify the directions

Here we present a novel normalization approach that per- along which the principal variations of the genetic expressions

forms satisfactorily even when the conditions above are not lie in the original r-dimensional space. We project the data

met, which is the most commonly observed scenario. In con- points onto the first two of these directions and examine their

trast to the methods requiring the selection of a baseline array, angular distribution to determine if a line through the origin

this method analyses the entire dataset simultaneously, and, as is present. Note that the original line in the full space need not

such, it is considered a complete data method (Bolstad etal, lie in this plane as its projection into the plane will also be a

2003). The goal of the technique is to determine in a multi- line through the origin.

array experiment if there is a subset of genes whose expression PCA is used commonly for reducing the dimensionality of

may be considered unaffected by the 'interesting' (biological) complex data (Anderson, 1971) and has been used previously

sources of variation and if there are such, to identify this set of in the analysis of microarray data from time-course experi-

specific, 'data-driven' housekeeping genes and use them for ments (Alter et al., 2000, 2003), for normalization of gene

normalization. Briefly, if the results from each array meas- expression ratios obtained from two different microchips of

urement are represented in a multi-dimensional vector space two-channel arrays (Nielsen et al., 2002) and for partition-

where each axis is a different sample, then the entire experi- ing large-sample microarray-based gene expression profiles

ment can be represented as a series of points corresponding to (Peterson, 2003). It is also an inseparable part for exploration

the strength of each gene's expression in each sample meas- of large genomic datasets (Misra et al., 2002). Previously,
ured. If a set of genes with an unchanged relative expression we have applied the PCA technique for removing 'unwanted'
is present, their intensity levels will represent points along a variation in multi-spectral datasets (Stoyanova and Brown,

straight line through the origin. We present a principal com- 2002).

ponent analysis (PCA)-based method for identifying such a Briefly, PCA identifies the directions of the largest vari-

line, if one exists. The factors determined from the expression ations in the data via the principal components (PCs), and

of these genes can be used to normalize the gene expression represents the data in a coordinate system defined by the

in the individual array datasets. PCs (Pi, 2, ... ), as follows:

D=RiPi+R 2P22 +R 3P 3 +"'+-RmiPm, (I)
MATERIALS AND METHODS where Pj (1 x m)and Rj (n x 1)are row and column matrices;

Theory Rj contain the projections of the data along the PCs (j =

Consider a gene expression dataset consisting of m arrays 1,. im), generally called scores. Below, some of the relevant

with n genes each. Let D be the data matrix containing in properties of the PCs are listed.

its rows the measured expression levels, and let gij be the (1) Pi are eigenvectors of the data-covariance matrix (cal-
measured expression level of the i-th gene in the j-th array culated around the origin, rather than around the mean)
(i = 1 ..... n, j = i . i.n m). We seek to identify a subset, S, and are orthonormal, i.e.
of s genes (s < n) whose expression remains constant over
the experimental conditions of the study. Mathematically, for 0 if i j j

the genes in S the following equations hold: I if i = j.

qjgij = ci or gij = ciiqj, (2) The PCs are ordered by the decreasing amount of vari-

ation in the data they explain. Let Al, A2,.... Am

where qj is the j-th normalization constant and ci is the true be the eigenvalues of the covariance matrix (Al >

concentration of the i-th gene, which is constant across the A2 > ... > Am). Each PC explains a portion of the

samples. If we plot the points gij in an m-dimensional space, total variance of D, proportional to its corresponding

we can see that they lie along a line through the origin, which eigenvalue.
has projections along the axes of {( lqj }. If we can find such a (3) The magnitude of Rj is proportional to its correspond-
line, we will have identified our desired relative normalization ing eigenvalue. Aj.
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(4) D can be represented sufficiently with fewer than m correspond to a one-sided test with a type-I error of 2.5%.
PCs [Equation (1)]. PCA provides a representation of However, in most cases, due to different procedures for
the data in a lower-dimensional space of significant microarray image quantification as well as the specific pre-
variables, filtering of the data, the distribution of Ok is unknown. In

(5) The PCs are a linear combination of the original data. cases where a normal distribution of 0 k cannot be assumed, it

The coefficients of this linear combination (Ri) are is recommended that their histogram be examined and p be

typically referred to as loadings and represent the pro- set appropriately. For added stringency of the test, the genes

jections of the PCs along the axes of the original in segment sk are assumed to be housekeeping genes only if

m-dimensional space. 
0k+I of the neighbouring segment Sk+I is also tested signific-

(6) The PCs minimize the squared distances of the variables ant. Then the genes in the two segments are merged in S, i.e.

(gene-expression levels) and themselves. S - sk U sk+i. If the angular density of the genes of further
contiguous segments is detected to be significant, then these

From the last three properties, it follows that the loadings of the genes are added to S. After all segments are tested, PCA is
first PC may serve as normalization coefficients of the arrays. applied to S and the reciprocal values of the loadings of the
In many cases, when the assumptions (1) and (2) (see Introduc- resultant first PC are used as normalization coefficients.
tion) are met, as discussed in detail below, PCA can provide If the procedure failed to identify at least two significant
directly the normalization coefficients sought. In other cases, contiguous segments, then either all the genes in the data can
we can use the first two PCs to detect linear behavior in a sub- be assumed to be housekeeping (S -= D), or, in the extreme
set of genes S (s < n) that are the 'true' housekeeping genes. situation, the housekeeping genes are either too few to be
PCA applied only to the genes in S will identify the appropri- detected or not existent (S = 0). In the first case, the loadings
ate normalization line in the entire m-dimensional data space. of the first PC from the initial PCA of D are the true normal-
Its projections can then be used as normalization factors. ization coefficients and can be used for direct normalization.

The procedure [dubbed PCA(line)] tests automatically There is not very much to be done in the second case--the
for the existence of and detects the group of genes, which PCA-derived normalization would be as erroneous as the ones
are distributed *tightly' along a line in the plane defined by produced by any other linear technique. Let XI be the fraction
the first two PCs. We chose this plane because by defini- (in percent) of the first eigenvalue, A 1, from the total variance
tion it contains the largest variations in the expression levels, in the data. In this case, a low X-I (in our experience <60%)
Although the actual straight line of the desired normaliza- will be indicative of a lack of normalizing genes.
tion may not lie completely in this plane, its projection in
the plane is also a straight line and will serve to identify the Biological samples (datasets)

desired set of genes. To identify such a line, we divide the part Human ovarian surface epithelial cell lines Microarray
of the plane that contains all the points into small angular seg- datasets obtained from experiments with RNA of human
ments and determine the number of data points (genes) in each ovarian surface epithelial (HOSE) cells were analyzed using
segment. The segment(s) containing the data-driven house- Atlas 1.2 Human arrays (ClonTech). The details of array pre-
keeping genes will contain a disproportionally large density paration and data extraction are described elsewhere (Patriotis
of points. This procedure is described below and given in et al., 2001). Briefly, the HOSE cells were derived from
detail in Appendix 1. a short-term primary cell culture obtained from one of

Initially, we assume S is an empty set (S -- 0). In the plane the ovaries of an individual predisposed to ovarian cancer.
defined by P1 and P2, we partition the angle through the origin The short-term HOSE cell culture was transduced with a
defined by the genes with maximal and minimal components Cytomegalovirus-based vector expressing the Simian Virus-
on P2 in p equal angular segments. Let sk (k = I .... p) 40 large T-antigen. As a result, the in vitro lifespan of the
be the subset of genes in D, that belong to the k-th segment cells, while still 'mortal' (I 18M), was considerably extended,

(Si U s2 u... u sp = D). We recommend that p be set initially leading to the spontaneous outgrowth of an 'immortal'/non-
to contain on average at least 10 genes per segment. Let Oh transformed cell line (1181m). Following multiple passages
be the angular densities defined as the number of genes in in culture, the 1181m cell line gave rise spontaneously to
each segment, sk, and M(Ok) and V(Ok) be, respectively, the cells that acquired anchorage-independent growth character-
sample mean and variance of 0,. Then, the density of the k-th istics and, ultimately, the potential to grow tumours in vivo
segment is considered to be significant if when inoculated in nude mice (I 18NuTu) (Frolov, A. et al.,

unpublished data). In the first experiment, the cDNA probes

Ok > M(00) + A IN 00, (2) were derived from total RNA purified from 11 8M, 1181m and
118NuTu. In the second experiment, microarray data were

where yi is a parameter indicating the number of standard obtained from I 18NuTu cells treated for different lengths of
deviations above the mean that is required for significance. If time (0, 24, 48 and 72 h) with the synthetic retinoic acid
a normal distribution of 9k is assumed, then it = 1.96 will derivative Fenretinide (4-HPR) (Moon et al., 1979).
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Lymphoma data (LD) 'Signal' dataset 1

The dataset was constructed from the supplementary datasets 'Signal' dataset 1 (SDI) contained two pairs of simulated
of Golub et al. (1999). The microarray measurements were arrays. The first pair satisfied conditions (1) and (2) (see Intro-
performed with RNA of samples obtained from bone marrow duction) by choosing a substantial number of the genes to be
and peripheral blood from patients with acute lymphoblastic housekeeping (250) and the number and magnitude of change
leukemia (ALL) or acute myeloid leukemia (AML) at the time of up- and down-regulated genes to be equal. The second pair
of diagnosis using high-density oligonucleotide Affymetrix was constructed to illustrate a scenario where these assump-
arrays. In the paper referred to, the data were normal- tions are not met: the housekeeping genes (150) were not
ized by pair-wise linear regression (LR) between the first a majority, and more genes were 'up-regulated' (200) than
sample (baseline) and the rest of the samples in the data- 'down-regulated' (150) (the details about the simulated up-
set. Only genes with satisfactory quality (marked with 'P' and down-regulation are given in Appendix 2). Two independ-
in the datasets provided) in each pair were considered for the ent sets of random noise were added to each array, generated
regression. The normalized datasets, as well as the normaliz- as the sum of half of both gene-dependent and -independent
ation factors, are supplied at http://www-genome.wi.mit.edu/ noise [Equation (3)], i.e. ½,(N 1 + N2).
cgi-bin/cancer/datasets.cgi. The data used here were non-
processed and 'non-normalized', and the combined datasets Signal dataset 2
resulted in a data matrix containing 72 arrays and 7129 genes. 'Signal' dataset 2 (SD2) contained eight arrays with 500 genes

Simulated data each. The first array in SD2 was generated randomly, as
described above. The gene expression levels of the remain-

The values in the simulated datasets were chosen to be real- ing seven arrays were generated with the idea of recreating
istically probable, based on our experience with data obtained a scenario where progressive changes occur in the studied
with the Atlas 1.2 CLONTECH arrays (Patriotis et al., 2001). samples (e.g. time-response to treatment or undergoing a pro-
The number of genes was set to 500, in agreement with cess of immortalization and malignant transformation). The
our observation that between 30 and 50% of the genes are details of simulation parameters for up- and down-regulation
expressed in any of the samples investigated in our lab. In are given in Appendix 3. The arrays were multiplied with
the first array, the expression levels, giI [in arbitrary units coefficients generated at random between 0.3 and 3. Finally,
(a.u.)], were simulated using the relation giI = 2U, where u random noise, generated as described for SDI, was added to
is uniformly distributed between 1 and 16. each array.

In all simulated datasets of pairs of arrays a multiplication
factor of 1.2 was applied to the second array, equivalent to RESULTS
q1 = I and q2 = 1.2. Gene intensities were assumed to be
background-corrected, and (unless noted otherwise) signals Housekeeping genes in HOSE cells
with intensities less than 200 were zeroed (thresholded). Figure 1(a) depicts the correlation plot of the 'designated'

'Noise' data housekeeping genes in the first experiment with HOSE cells:
11 8M on the x-axis, and on the y-axis II 81m (black series) and

The sources of noise in microarray datasets are multiple and I18NuTu (gray series). The expression of these genes is well
complex, and they contribute simultaneously with variable correlated (R 2 = 0.96), and, in this case, they can be used for
amounts to the total variance in the data. Generally, the total normalization of the data. Figure 1(b) depicts the correlation
noise contribution to the measured signal represents a vari- plot of the expression of the same set of housekeeping genes
able mixture of the contribution of two components: one is in the 118NuTu, untreated (0 h, x-axis) and treated with 4-
independent of gene intensity and affects the expression of all HPR for 24, 48 and 72 h (y-axis; black circles, gray triangles
genes equally, and the other is gene-dependent and increases and shaded squares, respectively). In this case, the correla-
with the magnitude of the gene expression. To investigate tion between the expression of the 'designated' housekeeping
the contribution of noise to the process of normalization, we genes is quite poor (R2 = 0.43, 0.81 and 0.85, respectively).
simulated two pairs of replicate arrays, as described above. From these data, it is clear that the expression profiles of the
Random noise was added to each array. In the first set, the 'designated' housekeeping genes are changed non-uniformly
noise was gene independent (N1 )-uniformly distributed ran- in the cells in response to the drug treatment.
dom noise between -2500 and 2500-and in the second set,
a gene-dependent (N2), uniformly distributed noise whose 'Noise' data
magnitude was ±-10% of the gene intensities. Formally, Figure 2(a) and (b) (left panels) depict the correlation between

the data in the two pairs of simulated arrays in this dataset
N1 = -2500 + 5000 u together with the linear trendline through the origin. Note that

gil,2 I U = U(O, 1). (3) the regression coefficient in both cases is very close to the true
0t value of the multiplication factor 1.2. The fit is slightly tighter
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Fig. 1. Correlation plots of the intensities of the 'designated' housekeeping genes in two microarray experiments. (a) HOSE cell lines at
different stages of malignancy, on the x-axis 118SM, and on the y-axis, 11l81m (black) and 11l8NuTu (gray). Regression lines are indicated in
black and gray, respectively; (b) 11l8NuTu cell line following treatment with Fenretinide, on the x-axis at O h and on the y-axis after 24 (black
circles). 48 (gray triangles) and 72 h (squares) of treatment. Regression lines are indicated in black solid, black dashed and gray, respectively
(note that the black solid and black dashed regression lines are overlapping).

for the second dataset (R2  0.986 versus R2 = 0.992), PC, 1, is along the regression line of this rotated version

which reflects the smaller contribution of the noise in the of Fig. 3(b)]. The procedure for automatic detection of the
overall gene intensities. Figure 2(c) (left panel) depicts the housekeeping genes is schematically illustrated in Figure 4(b).
correlation between two replicate array datasets obtained from The angle encompassing all data points (between 1.069 and
11 8M. The genes depicted by gray squares represent the ides- 2.438 radians) was divided into 50 segments. The histogram
ignated' housekeeping genes. On the right panels in Figure 2 of the angular densities 09 , (k = 1, 2....50) is presented in
the correlation of the logarithmic transforms of the data from Figure 4(c) [M(Ok) =5.92 and •J(~ = 5.18]. For g =

the left panels are presented (due to the restriction of the logar- 1.96, three contiguous segments, starting at p = 22. contained
ithmic function to only positive numbers, for this comparison, points with a significantly higher density [Equation (2)]. A
only genes that are expressed simultaneously in the two arrays total of 63 points (subset S) from these segments were extrac-
are used). Comparison of the graphs of simulated [Fig. 2(a) ted. These genes (orange points), together with the original set
and (b)] and real [Fig. 2(c)] noise indicates the similarity in of housekeeping genes (in green), are presented in Figure 4(d).
the overall distributions, although the real data have a greater The collinearity between the identified genes and the house-
variance, keeping genes is apparent. Thirty-two of the genes in S belong

to the original set of 76 housekeeping genes in the analyzed
'Signal' dataset SD1 data, indicating that the procedure recovered successfully a
The graphs of the two pairs of arrays in this dataset, together substantial fraction of them (32/76, or >40%). Moreover, the
with the regression line through the origin, are presented in procedure detected an additional 31 genes whose expression
Figure 3. The housekeeping genes are marked in green. In changes in accordance with a housekeeping gene behavior.
the case of the first pair [Fig. 3(a)], it is clear that the regres- PCA was applied to the data in S (X1 = 99%), and the
sion line is along the line of normalization and, therefore, first PC loading factors were ql = 0.635 and q2 = 0.773,
all the above reference normalization methods will perform corresponding to a relative normalization factor of 1.217.

well. Obviously, this is not the case with the second data-
set [Fig. 3(b)], and we applied the PCA (line) procedure for Simulated dataset SD2
determining the subset of housekeeping genes. PCA was applied to 205 genes with non-zero intensities in

After thresholding, 296 genes were found with non-zero all eight arrays (88 up-regulated, 52 down-regulated and 64
intensities simultaneously in both arrays (132 up-regulated, housekeeping) (X1l = 96%). The points in the P1 and P32
88 down-regulated and 76 housekeeping). PCA was applied plane were within 1.079 and 1.938 radians. As in the case of
to this set (Xi = 96%). The representation of the data along SD1, the densities of points in 50 segments were calculated
the first two PCs is shown in Figure 4(a) [note that the first (M(Ok) = 4.08 and Vf• = 5.21). For #. = 1.96. three
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Fig. 2. Correlation plots of gene intensities in replicate arrays, displayed on untransformed (left panels) and logarithmic scales (right panels)
with indicated LR line (gray): (a) simulated data, containing gene-independent noise; (b) simulated data, containing gene intensity-dependent
noise; (C) two replicate arrays of 11 8M cell line. The genes shown in gray squares represent the designated housekeeping genes included in
the arrays by the manufacturer.
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Fig. 3. Correlation plots of gene intensities of two simulated array datasets (SDI) with indicated housekeeping genes (green squares) and
indicated LR line (orange): (a) 'symmetric' case, where the majority of the genes are housekeeping and the number and magnitude of up-
and down-regulated genes is similar; (b) the housekeeping genes are of a relatively smaller number, and the up-regulated genes dominate the
distribution.

contiguous segments containing a total of 64 points (subset S) a total of 77 genes, were determined to have significant angu-
contained a significant number of points. The majority of lar densities. The overwhelming majority of genes (55) in this
the points in S belonged to the original set of housekeep- set belonged to the original set of housekeeping genes. The
ing genes analyzed (44, or 69%), and the remaining 20 were housekeeping gene sets derived by PCA (line) on thresholded
split between the 12 up-regulated and eight down-regulated and unfiltered data were strongly overlapping-all but four
genes. PCA was applied to the data in S (XI = 99%), and the were identical to the 64 housekeeping genes determined with
normalization coefficients qi (j = 1 ... , 8) were calculated the thresholded data. Finally, the PCA-determined normaliz-
as the loadings of the first PC. ation factors in this case were virtually identical to the ones

We compared the accuracy of the PCA(line)-esti mated nor- determined with the thresholded data.
malization factors with the ones estimated by LR and mean
(MEAN). We scaled all normalization factors so that their Lymphoma Data
sum was equal to I. and the correlation between the true PCA was applied to all 7129 genes in the dataset (X- =
values (x-axis) and the estimated values (y-axis) are presen- 88.31%). All loadings of P1 were scaled by the first one,
ted in Figure 5(a). Although the overall correlation between resulting in a normalization factor of I for the first array.
the true and estimated normalization factors is quite good Figure 6(a) depicts the comparison between LR- and PCA-
[R2 = 0.9964, 0.9862 and 0.9726 for PCA(line), LR and derived (yellow circles) values. The high correlation (R2 =
MEAN estimates, respectively], it is clear that PCA(line) 0.99) between the two series is apparent. Further, we applied
provides the best estimates. We also calculated the error for the PCA(line) procedure. Three contiguous segments (from a
each individual array, defined as the percentage difference total of 200), containing 1095 genes, were above the threshold
of the estimated from the true normalization factor, and the [M(Ok) = 35.64, T_(Ok) = 72.21, u = 4]. PCA was applied
minimum, maximum and average error values are presented to the intensities of the genes in S (XI = 93.85%) and the load-
in Figure 5(b). This analysis indicated that the error of the ings of P1 rescaled appropriately and compared with the LR
PCA(line)-derived estimates is on average lower by a factor results [Fig. 6(a), black circles]. While showing an overall
of 2 and 3 as compared with the ones derived by LR and good agreement with the LR-derived results (R2 = 0.92),
MEAN, respectively, they also indicate, in some individual cases, substantial dif-

We further investigated the effect of data thresholding on the ferences with the PCA(line)-estimated values. The average
PCA(line) procedure. We re-analyzed SD2 by applying PCA absolute value of the relative difference between LR- and
to all 500 genes in the dataset. Since some of the scores along PCA-derived factors was 7.52%, with a range of 0.07-30.84%
P2 were negative, the data points spanned the entire plane in the case of array #65 [Fig. 6(a), marked with an arrow]. We
(between 0.03 and 6.27 radians). In this case, we set p = 200 then examined the correlation of the intensities of the genes
and / = 4. Two consecutive segments [Fig. 5(c)], containing marked with 7P' (those of satisfactory quality) in arrays # 1
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Fig.4. (a) The data from Figure 3b, presented in the PC-plane; (b) schematic illustration of segmentation of the part of the PC-plane containing
the data; (c) histogram of the angular densities of the segments; (d) 'true' (green) and PCA(line)-detected housekeeping genes (orange).

and # 65 [Fig. 6(b)]. The normalization lines [represented in the coefficient of variation (COV) between the five series of
orange and blue, respectively, for LR and PCA(line)] indicate estimates. The average COV for the 72 normalization factors
that in the case of LR, a handful of strongly expressed genes was 1.71%.
are driving the normalization. A similar graph was obtained
with arrays #1 and #58, which also showed a large difference
between the two normalization procedures. DISCUSSION

To determine how the number of segments in the plane Normalization of gene intensities in multi-array experiments
impacts the estimated normalization coefficients, we ran the is crucial for the ultimate biological interpretation to be
procedure with p = 100, 300, 400 and 500. In all cases, meaningful (Hoffmann et al., 2002). Only after proper nor-
the procedure extracted essentially the same subset of nor- malization can changes in expression of a given gene amongst
malizing housekeeping genes. The number of genes for each the studied samples in the experiment be characterized quant-
p was 1410, 1192, 1092 and 1162, respectively. We estim- itatively. Conversely, erroneous (or no) normalization may
ated a (5 x 5) correlation matrix of the derived normalization lead to inaccurate estimation of the changes in gene expres-
factors for each value of p. All coefficients in the correlation sion including wrong conclusions with regard to their up- or
matrix were greater than 0.994, indicating the high degree down-regulation. While optimal normalization is still a sub-
of reproducibility between the derived normalization factors ject of discussion, individual investigators are faced daily
for different numbers of segments (p). We also estimated with many questions about the analysis of these complex
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Fig. 5. (a) Relation of 'true' normalization factors and factors estimated via PCA(Iine), LR and MEAN in a simulated dataset containing
eight arrays. The black line indicates the line of identity; (b) ranges (minimum and maximum) and average of the absolute values of relative
errors of estimation of the normalization factors in the three estimates; (c) histogram of the angular densities of the segments in the PCA(line)
for unfiltered data.

data. For example, should the array data be logarithmic- minimal assumptions about the data and does not require any
ally transformed prior to normalization; should low intensity pre-processing, pre-screening or filtering of the data.

spots be discarded, and, if so, what is the right cut-off The need for alternative normalization techniques arose
limit for this operation; should the mean or median intens- with the realization that genes assumed as housekeeping and
ity of the arrays be used for normalization; or altemat- 'designated' by the manufacturers as such on arrays are not
ively, do 'designated' housekeeping genes play reliably their reliable for accurate data normalization. In the first experiment
assigned role? with HOSE cells, investigating a set of three cell lines with

In this report, we address all these questions and present a close genetic origin, the 'designated' housekeeping genes
simple procedure for normalization of datasets generated with change in a coordinated fashion, and it is likely that they
single-channel arrays based on PCA. The procedure makes fulfill their role as normalizing genes. This result is anticipated
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Fig. 6. (a) Correlation between LR- estimated (x-axis) and PCA- or PCA(line)-estimated (yellow series and black series, respectively)
normalization factors for the LD. The orange line indicates the identity line. The arrows point at arrays with a large relative difference;
(b) correlation plots of intensities of genes marked with 'P' in arrays #1 and #65. The normalization lines derived by the LR and PCA(line)
estimates are indicated in orange and blue, respectively.

since the three cell lines were cultured under standard growth it increases the relative contribution of the gene-independent
conditions and the observed differences in the global gene noise in genes expressed at low levels. Because of these
expression profiles are related to only a small subset of genes adverse effects, and the fact that by estimating the numbers
associated with the sequential transition of the cells through of genes in the segmented plane the PCA(line) procedure
the process of malignant transformation. Conversely, in the allows low-expressed genes to be taken into consideration,
second experiment, the 'designated' housekeeping genes we chose to implement our normalization procedure on raw
appear to change differentially in response to treatment with (untransformed) data.
Fenretinide. This is consistent with the dramatic biochem- The described procedure is also insensitive with respect to
ical changes associated with the process of cells undergoing prefiltering (thresholding) of the data, given that the para-
programmed cell death (Querec, T.D. et al., manuscript in pre- meter 14 [Equation (2)] is adjusted appropriately. In the case

paration). The major alterations in the global gene expression of 'thresholded' data, A = 1.96 will be sufficient to discrim-
profile that precedes and leads to the triggering of apoptosis inate between the sought housekeeping genes and the rest
affect the expression states of most housekeeping genes. [Fig. 4(c)]. This g-value will merely distinguish the 'noise'

Pre-processing of the data prior to normalization is an genes from the signal ones in non-prefiltered data. Thus, a lar-
important issue. Typical steps include background correc- gerAt [as in the case shown in Fig. 5(c)] is required to detect
tion, logarithmic transformation and/or thresholding. We the normalizing genes sought. We therefore strongly recom-
believe that the background should be removed prior to nor- mend exploring the characteristics of the angular histogram
malization, so that the normalization line goes through the of the data before setting the appropriate z-value.
origin. Although we simulated gene intensities, as described The only assumption made about the distribution of the
in the Materials and methods section, there is no theoretical intensities of the houseskeeping genes for PCA(line) is that
basis to assume that real data comply with this distribution. they are distributed along a straight line. This assumption
Log-transformation has the advantage of transforming the is very sensible for single-channel arrays, unlike the case
noise distributions approximately to Gaussian. This property of the double-channel arrays, where it is known that a non-
can be used for estimating the probabilities of differentially linear dependence exists between the gene expression levels

expressed genes (Kerr et al., 2000). The PCA-based normal- among the two channels (Yang et al., 2002). Furthermore, it
ization procedure, however, is based on identifying the genes has been shown recently that even for these arrays the lin-
along the normalization line in the dataset and is invariant to ear and non-linear normalization methods perform similarly
prior transformation. Moreover, based on 'noise'-simulated (Park et al., 2003). In our experience, most of the non-
data, as well as from the HOSE cell replicates, it is apparent linear effects are due to improper scanning settings, which,
that log-transformation may be detrimental to the analysis as besides the unwanted variations, produce saturated spots also.
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We consider the identification of the housekeeping genes The PCA(line) procedure, besides having the above lis-
with intensities within the linear range, as proposed by the ted general advantages of PCA, can also deal successfully
PCA(Iine) routine, to be a reliable and robust source for with situations where conditions (1) and (2) do not apply. In
normalization, the simulated datasets, the PCA(line) results are closest to

The linearity is the basis of the stability of the approach with the true values as judged by the relative mean-square errors
respect to the parameter p-it is sufficient to detect a small from the three procedures tried. Visual inspection of the
subset of S to identify uniquely the normalization line. Con- LR and PCA(line) normalization lines in the graph shown
versely, a larger set of genes along this line will not impede in Figure 6(b) suggests that this is also true for the Affy-
the calculation of the normalization parameters. Still, in order metrix data. In addition, it eliminates the need for using a
to obtain meaningful histograms of the number of genes in baseline array, which, as shown by Bolstad et al. (2003), has
each segment, we recommend that p initially be selected to a clear disadvantage relative to the complete data methods for
contain on average at least 10 genes per segment. The con- normalization such as the one proposed here.
dition for linearity naturally excludes genes with saturated In conclusion, the proposed normalization procedure
expression levels and it thus contributes significantly to redu- improves significantly the accuracy and precision of the meas-
cing the interference of these typically large signals in the ured gene expression levels. Such procedures will become
normalization process. even more relevant with further refinement and standardiza-

Conditions (1) and (2) (see Introduction) are instrumental tion of the microarray technology.
for the successful performance of the referenced normaliz-
ation procedures. However, in single-channel arrays, such
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